
Using Bayesian Networks for Reasoning with Small Samples, Missing 
Values, and No Data.

From Statistical Inference to
Probabilistic Reasoning
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The BayesiaLab Software Platform
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A Practical Introduction for Researchers

• Free download:
www.bayesia.com/book

• Hardcopy available on Amazon:
http://amzn.com/0996533303

Bayesian Networks & BayesiaLab
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The End of 
Theory?
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What if I have 
little or no 
data?



Small-Data Challenges

• Generating knowledge from “small data”

• Overparameterization

• Variable selection 

• Applying knowledge to “small data”

• Incomplete observations

• Uncertain observations

• Hypothetical scenarios

• Cost of observations

Small Data in a Big-Data World
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A Map of Analytic Modeling
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The Purpose of Models
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Source of 
Models
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Modeling Overview
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Modeling Overview
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Bayesian Networks



Modeling Overview
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Bayesian Networks

Example 2:
Knowledge Discovery 

& Diagnosis

Example 1:
Knowledge Encoding 

& Diagnosis

“No Data &
Unreliable Evidence”

“Small Data & 
Incomplete Evidence”



The New Paradigm: Bayesian Networks
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Bayes's Theorem for Conditional Probabilities

Rev. Thomas Bayes
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The New Paradigm: Bayesian Networks
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Probabilistic Graphical Model

• The graph is the model

• No formulas, no equations!



Two Components:

• Node

• Arc

The New Paradigm: Bayesian Networks
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Example

• A specialist in respiratory 
medicine summarizes his 
knowledge about his 
patients.

The New Paradigm: Bayesian Networks
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The New Paradigm: Bayesian Networks

Node:
Variable of
Interest

Node Name State No. State Value Probability
1 <30 25%
2 30-65 40%
3 >65 35%

Age
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Age

The New Paradigm: Bayesian Networks
Node:
Variable of
Interest

Node Name State No. State Value Probability
1 TRUE 53.75%
2 FALSE 46.25%Smoker 



The New Paradigm: Bayesian Networks
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Arc
Age Smoker

Discrete & Nonparametric
Probabilistic Relationship

P(Y|X)

Age FALSE TRUE
<30 31% 69%
30-65 53% 47%
>65 74% 26%

Smoker



The New Paradigm: Bayesian Networks
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Compare to algebraic formula:
Representation of one variable of the joint probability distribution, i.e. y=f(x) 

Key Properties of Bayesian Networks

• Representation (or approximation) of the joint probability distribution of all variables.

• Numerical and categorical variables are treated identically.

• No distinction between dependent and independent variables.

• Nonparametric.

The New Paradigm: Bayesian Networks
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Dependent

IndependentIndependent



Compare to “uni-directional” algebraic formula and human intuition 

Key Properties of Bayesian Networks

• Omni-directional Inference, i.e. evaluation is always performed in all 
directions.

The New Paradigm: Bayesian Networks
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Omni-Directional Inference

The New Paradigm: Bayesian Networks
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Key Properties of Bayesian Networks

• Bayesian networks are inherently probabilistic.

• Evidence and inference are represented as distributions.

• Inference can be performed with partial evidence.

The New Paradigm: Bayesian Networks
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Key Properties of Bayesian Networks

• Bayesian networks are inherently probabilistic.

• Evidence and inference are represented by distributions.

• Inference can be performed with partial evidence.

The New Paradigm: Bayesian Networks
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Compare to algebraic formula Deterministic 
Point Estimate

Single 
Value Input

Single 
Value Input



Key Properties of Bayesian Networks

• Bayesian networks can encode causal direction, algebra cannot.

The New Paradigm: Bayesian Networks
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Limitations of Algebra

“…produced by the force…” Causal Interpretation Not PossibleCausal Interpretation Possible



Key Properties of Bayesian Networks

• Bayesian networks can encode causal direction, algebra cannot.

The New Paradigm: Bayesian Networks
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Algebra vs. Bayesian Network



The New Paradigm: Bayesian Networks
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Using
Bayes’ Rule for 

Inference
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The New Paradigm: Bayesian Networks
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Inference Engine
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Modeling Overview
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Bayesian Networks

Example 2:
Knowledge Discovery 

& Diagnosis

Example 1:
Knowledge Encoding 

& Diagnosis

“No Data &
Unreliable Evidence”

“Small Data & 
Incomplete Evidence”



Example 1:
Probabilistic Inference
Taxi Cab Example



Motivation: Human Biases in Diagnostic Reasoning

Example 1
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



See Chapter 4
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Human Reasoning Experiment (adapted from 
Kahneman & Tversky, 1980)

• A cab was involved in a hit-and-run accident 
at night.

• Two taxicab companies are operating in the 
city, one with yellow and one with white 
taxis:

• 85% are yellow and 15% are white

Probabilistic Inference



• A witness identified the taxi involved in the accident as white…

Probabilistic Inference
1
1
/
3
/
2
0
1
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At the Trial

• An expert witness explains that human 
vision has an 80% sensitivity in terms of 
distinguishing between white and yellow 
given light conditions at the time of the 
accident.

• What is the probability that the taxi was 
actually white?

Probabilistic Inference
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• We need to perform diagnostic probabilistic inference, i.e. from effect to cause, to answer 
this question.

• The Bayes Rule allows us to compute the probability:

Probabilistic Inference
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Representing our domain knowledge in the form of a simple Bayesian 
network

Probabilistic Inference
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Marginal Distribution Conditional Probability Table



Carrying out inference based on observing evidence

Probabilistic Inference
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Simulation

Simulation



Carrying out inference based on observing evidence

Probabilistic Inference
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Diagnosis

Diagnosis

?



Carrying out inference based on observing evidence

Probabilistic Inference
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Diagnosis

Diagnosis



Modeling Overview

BayesiaLab.com 51

Bayesian Networks

Example 2:
Knowledge Discovery 

& Diagnosis

Example 1:
Knowledge Encoding 

& Diagnosis

“No Data &
Unreliable Evidence”

“Small Data & 
Incomplete Evidence”



Supervised Learning

Example 2: Breast Cancer Diagnostics
See Chapter 6



Background for Original Study (Wolberg et al.)

• Challenge in Breast Cancer Diagnostics:

• Mammography lacks sensitivity (i.e. true positive rate): 68% to 79%;

• Surgical biopsy has high sensitivity (>98%), but invasive, time-consuming 
and costly;

Breast Cancer Diagnostics
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Image Analysis of Fine Needle Aspirates

• Sensitivity of Fine Needle Aspiration with visual interpretation varies 
widely (65% to 98%)

Breast Cancer Diagnostics
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Image Analysis of Fine Needle Aspirates

Breast Cancer Diagnostics
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Image Attributes
• Clump Thickness

• Uniformity of Cell Size

• Uniformity of Cell Shape

• Marginal Adhesion

• Single Epithelial Cell Size

• Bare Nuclei

• Bland Chromatin

• Normal Nucleoli

• Mitoses



Overview
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Sample 
Code 

number

Clump 
Thickness

Uniformity 
of Cell Size

Uniformity 
of Cell 
Shape

Marginal 
Adhesion

Single 
Epithelial 
Cell Size

Bare Nuclei Bland 
Chromatin

Normal 
Nucleoli Mitoses Class

1000025 5 1 1 1 2 1 3 1 1 2
1002945 5 4 4 5 7 10 3 2 1 2
1015425 3 1 1 1 2 2 3 1 1 2
1016277 6 8 8 1 3 4 3 7 1 2
1017023 4 1 1 3 2 1 3 1 1 2
1017122 8 10 10 8 7 10 9 7 1 4
1018099 1 1 1 1 2 10 3 1 1 2
1018561 2 1 2 1 2 1 3 1 1 2
1033078 2 1 1 1 2 1 1 1 5 2

Wisconsin Breast Cancer Database



Number of Possible Networks

• 2 Nodes: 3

• 3 Nodes: 25

• 4 Nodes: 543

• 5 Nodes: 29,281

• 6 Nodes: 3.8×106

• 7 Nodes: 1.1×109

• 8 Nodes: 7.8×1011

• 9 Nodes: 1.2×1015

• 10 Nodes: 4.2×1018

• 11 Nodes: 3.2×1022

• 12 Nodes: 5.2×1026

Challenges
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The BayesiaLab Software Platform
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• learning

• editing

• inference

• analysis

• simulation

• optimization

• publication



BayesiaLab WebSimulator

Breast Cancer Diagnostics
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Questions?
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Anyone?

Questions?



A Practical Introduction for Researchers

• Free download:
www.bayesia.com/book

• Hardcopy available on Amazon:
http://amzn.com/0996533303

Bayesian Networks & BayesiaLab
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Thank You!
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stefan.conrady@bayesia.us

linkedin.com/in/stefanconrady facebook.com/bayesia

BayesianNetwork


